On the Optimal Conflict Resolution for Air Traffic Control

Dept. Of Electrical Systems and Automation
Pisa University
Laboratory of Information and Decision Systems
MIT

Eric Feron
Antonio Bicchi

Introduction

- ➤ Formulation as Optimal Control Problem (OCP):
 - Extremal solution (PMP):
 - Unconstrained path;
 - Constrained path of zero length;
 - Constrained path of non-zero length;
 - Conflict Resolution Algorithm;
- Formulation as a Mixed Integer Programming (MIP)

Model of OCP

Motion of aircraft subject to some constraint:

- linear velocity parallel to a fixed axis on the vehicle
- constant non negative linear velocities
- bounded steering radius
- Minimum distance between aircraft

GOAL: given an initial and a final configuration for each aircraft, find the collision free paths of minimum total time.

The OCP

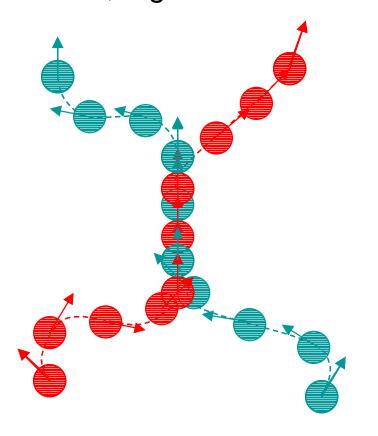
$$\begin{aligned} \min J \\ x_i' &= u_i \cos \theta_i \\ y_i' &= u_i \sin \theta_i & i &= 1, ..., N \\ \theta_i' &= \omega_i \\ \left| \omega_i \right| &\leq \frac{u_i}{R_i} & i &= 1, ..., N \\ D_{i,j} &>= 0 & \forall t, i, j &= 1, ..., N \\ q_i(T_i^s) &= q_i^s, q_i(T_i^g) &= q_i^g & i &= 1, ..., N \end{aligned}$$

collision constraint:

$$D_{i,j}(t) = \sqrt{(x_i(t) - x_j(t))^2 + (y_i(t) - y_j(t))^2} - d_{i,j} \ge 0$$

Optimal Solution for OCP

Optimal solution will consist of concatenations of free and constrained arcs, e.g.



Unconstrained

Constrained

Unconstrained

Unconstrained paths for OCP

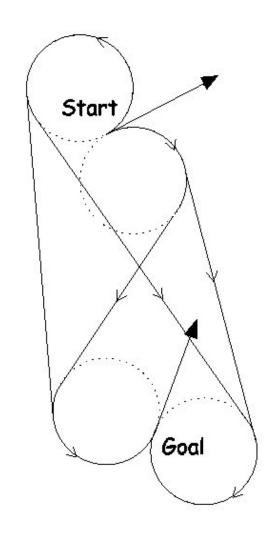
Extremal unconstrained path are concatenation of

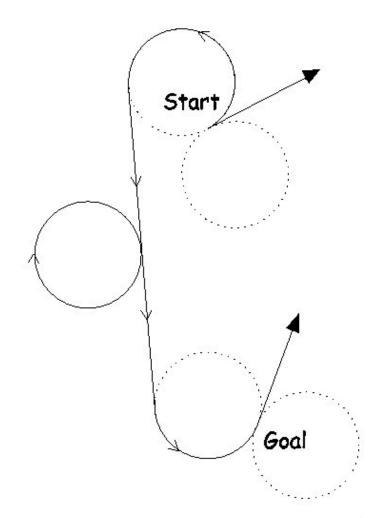
Type S

Arc of a circle

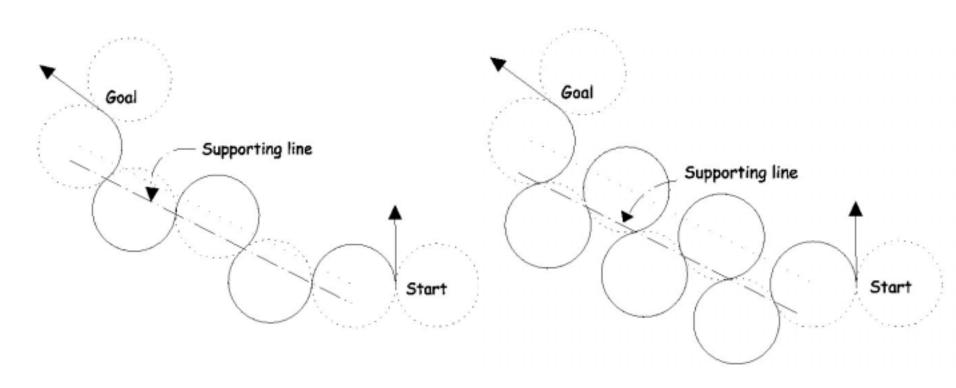
Type C

Extremal free paths of type CSC

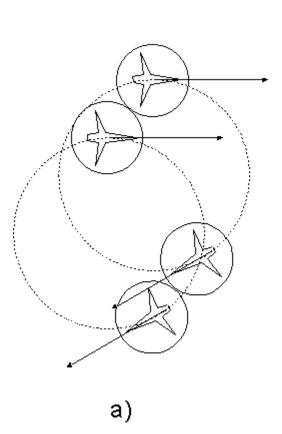


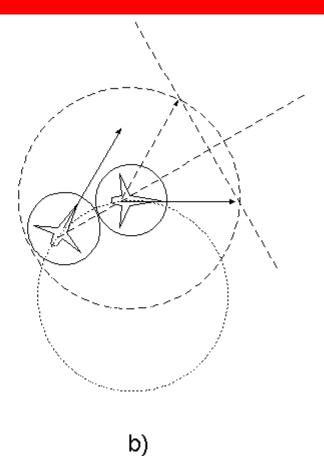


Extremal free paths of type CCC



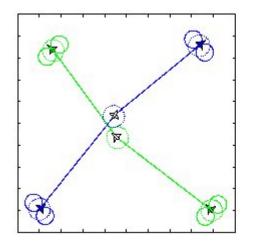
Contact Configuration

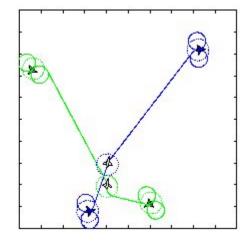


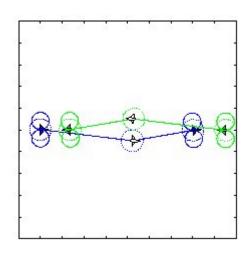


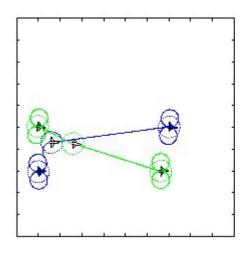
Velocities are symmetric respect to the line joining the two aircraft

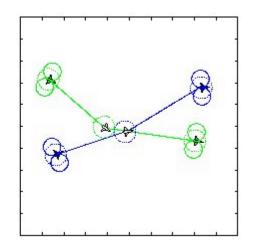
Conflict Resolution Algorithm

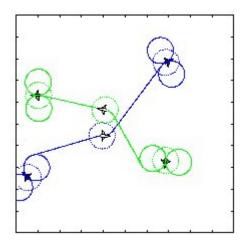




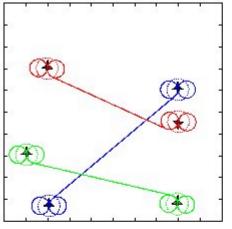


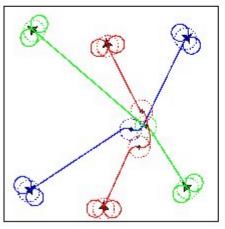


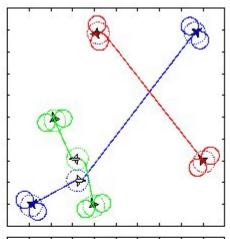


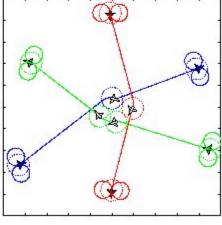


Conflict Resolution Algorithm









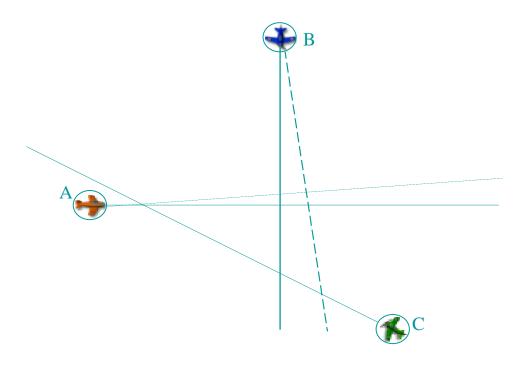
Model of MIP

Motion of aircraft subject to some constraint:

- linear velocity parallel to a fixed axis on the vehicle
- constant non negative linear velocities
- Minimum distance between aircraft
- Maneuver: heading angle instantaneous change

GOAL: given an initial and a final configuration for each aircraft, find a single "minimum" maneuver to avoid all possible conflict.

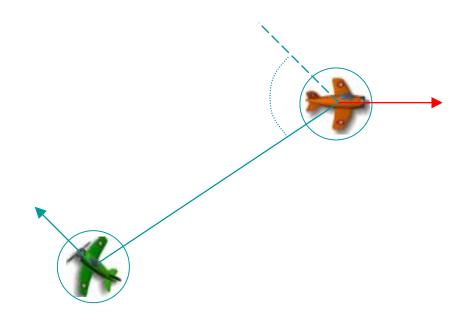
Maneuvre scenario for MIP



Initial Configuration: (x_i, y_i, θ_i)

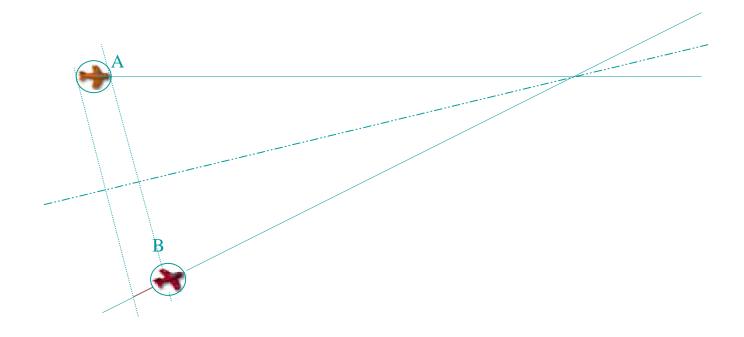
Configuration after maneuver: $(x_i, y_i, \theta_i + p_i)$

Nonintersecting direction of motion



Constraints that are function of (x_i, y_i, θ_i) and are linear in p_i

Intersecting direction of motion



Constraints that are function of (x_i, y_i, θ_i) and are linear in p_i

Linear constraint for MIP

$$g_1(x, y, \theta, p) \leq b_1$$

or

$$g_2(x, y, \theta, p) \le b_2$$

or

$$g_3(x, y, \theta, p) \le b_3$$

 g_i are linear function in p_j

$$g_{1}(x, y, \theta, p) - f_{1}M \le b_{1}$$

$$g_{2}(x, y, \theta, p) - f_{2}M \le b_{2}$$

$$g_{3}(x, y, \theta, p) - f_{3}M \le b_{3}$$

$$f_{1} + f_{2} + f_{3} \le 2$$

M "big" positive number f_i Boolean variables

The MIP problem

Minimum deviation problem:

$$\min \|p\|_{t}$$

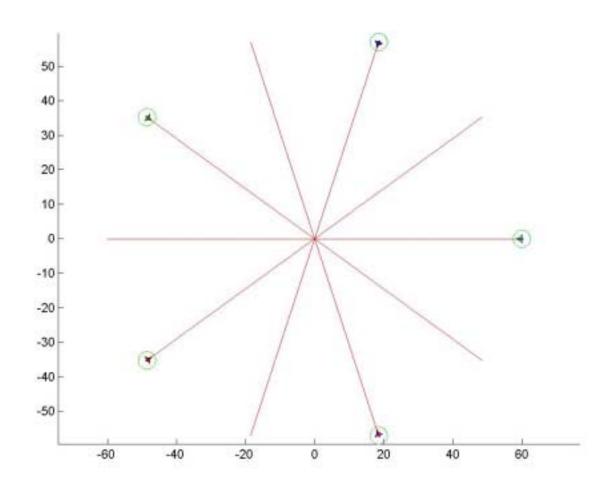
$$A_{1}p + A_{2}f \le b$$

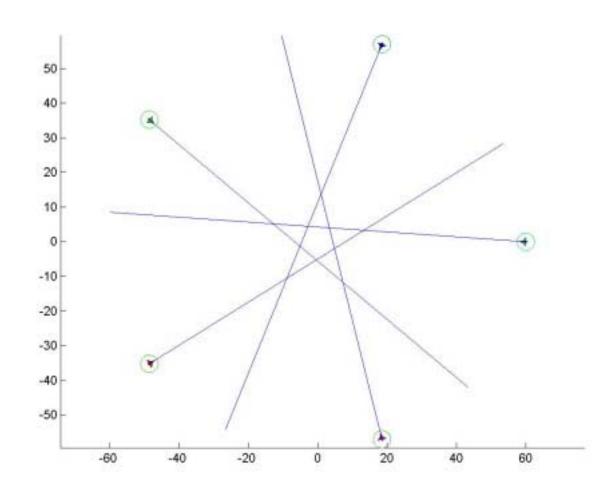
$$f \quad Boolean$$

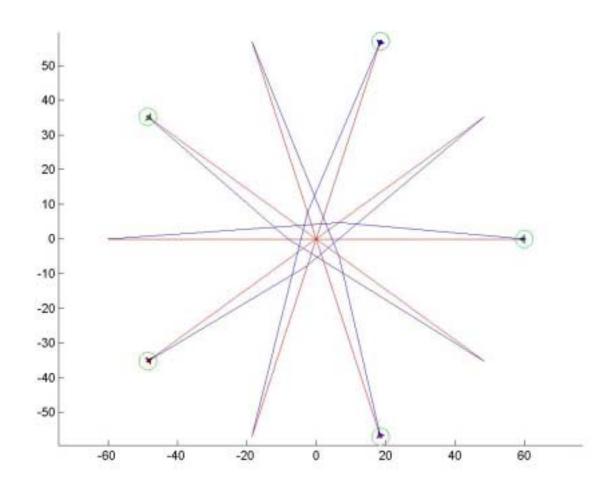
$$n$$
 Aircraft $7n^2$ variables $23n^2$ constraints

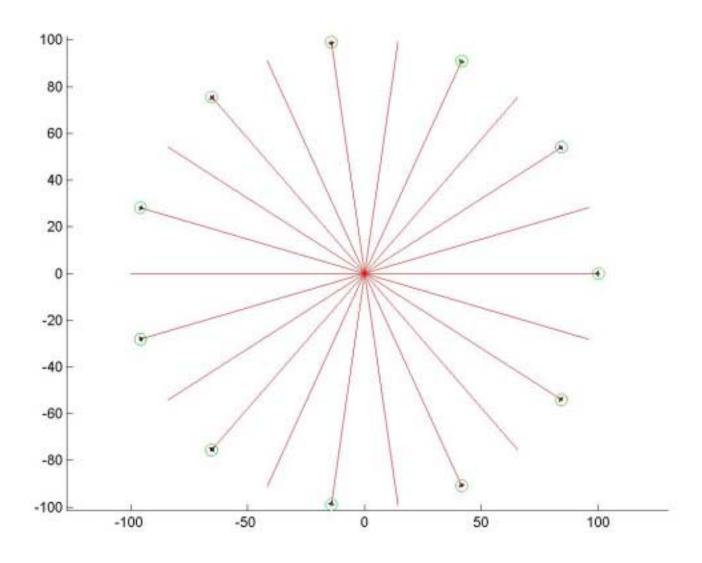
•
$$t = 1$$
 $\min \sum_{i=1}^{n} |p_i|$

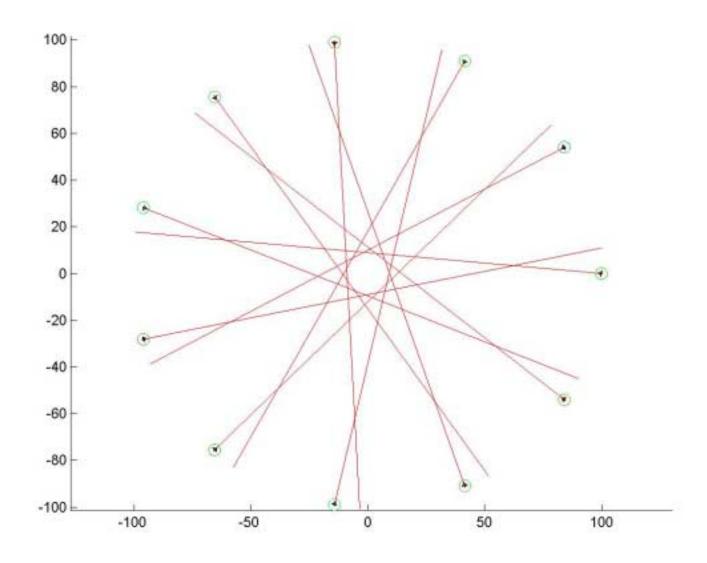
•
$$t = \infty$$
 min $\max_{i=1,\dots,n} p_i$

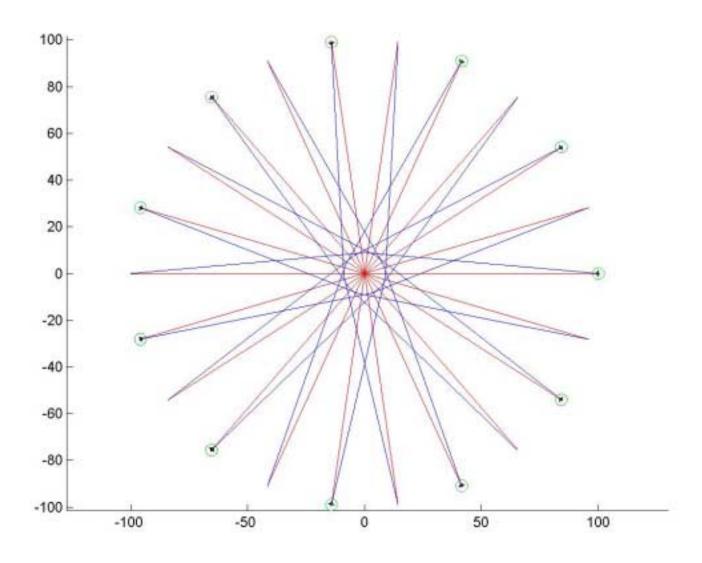












CPLEX Simulation

n (Aircraft)	Time (sec.)	Length (nm)	Delta (nm)
5	0.34	120	0.25
7	1.18	120	0.55
10	5.91	200	0.45
11	10.4	200	0.79

